
Zip for 4D

This plug-in for 4D allow you to programmatically read and write ZIP archives. Both reading and writing uses iterative
approach.

When not registered, Zip4D works for 30 minutes. After this trial period, Zip4D will ignore all commands and will
return an error -1.

This plug-in uses 'zlib' general-purpose compression library version 1.2.1, November 17th, 2003 Copyright (C) 1995-
2003 Jean-loup Gailly and Mark Adler.

Common (auxiliary) routines:
- register the plug-in (ZIP Register)
- convert Date & Time to/from Unix time-stamp [seconds since 1.1.1970] (ZIP 4DDateTime To Time, ZIP TIME

TO 4DDATETIME)
- compress/decompress BLOB - internally used for ZIP entries (ZIP Compress BLOB, ZIP Decompress BLOB)

ZIP file reader routines:
- open a ZIP archive (ZIP Open File, ZIP Open BLOB)
- navigate through the archive (ZIP Go To First Entry, ZIP Go To Next Entry, ZIP Go To Entry)
- get information on current ZIP entry (ZIP Get Entry Properties, ZIP Current Entry)
- extract current entry (ZIP Calculate Entry, ZIP Extract Entry, ZIP Extract Into BLOB)
- extract rest of the archive to disk (ZIP Calculate Rest Of Archive, ZIP Extract Rest Of Archive)
- close the archive (ZIP Close)

ZIP file writer routines:
- create a ZIP archive (ZIP Create File, ZIP Create BLOB)
- add an entry to the archive (ZIP Add Entry, ZIP Add BLOB, ZIP Copy)
- add folder hierarchy to the archive (ZIP Calculate Hierarchy, ZIP Add Hierarchy)
- save the archive (ZIP Save File, ZIP Save BLOB) - you can use ZIP Close if you are aborting the archive

creation - archive will be invalid

GZip file routines:
- ZIP Open GZip File
- ZIP Read GZip File
- ZIP Create GZip File
- ZIP Write GZip File
- ZIP Close GZip File

Comments to current implementation:
- there is no possibility to update ZIP archives - you have to do it in 4D (using ZIP Copy command)
- only deflation method is supported
- there is no line-endings conversion for text files - just the bit in the archive is set
- there is virtually no file name conversion - ZIP archive (AFAIK) should use iso-8859-1 encoding
- if “show progress window” flag is set, Zip for 4D will display its own progress window.
- there is no support for long names truncation

- on Mac OS supporting HFS+ API, long names are used (even under Mac OS 9, where Finder does _not_ support
long names)

- on Mac OS not supporting long names, error -37 will be thrown (name too long)
- on Windows the plug-in will fail to receive some information about files with names beginning with dot (e.g.

".DS_Store") - it seems that the Altura is trying to open a driver instead of a file – such files will not have the Mac
extra info attached

- there is no check if expanded entry overwrites existing file(s), developer can use 4D callback methods to implement
this

- there is no check if someone is trying to zip currently created archive into itself, ...
- error reporting (problem identification) is very limited (generally, error -1 and 2)

*** auxiliary routines ***

ZIP Register (SerialNumber; MacKey; WinKey) -> Result
-> SerialNumber C_LONGINT
-> MacKey C_STRING(24)
-> WinKey C_STRING(24)
<- result C_LONGINT

Register the plug-in. In beta version, this call is ignored.
Result is one of:

0 not registered
1 registered

NOTE: In versions older than 0.9.7, this call was implemented as procedure (no result value), not as function.

ZIP 4DDateTime To Time (Date; Time; convertToUTC) -> UnixTime
-> Date C_DATE
-> Time C_TIME
-> convertToUTC C_LONGINT 0 = no, 1 = yes (date & time are local - convert to UTC)
<- UnixTime C_LONGINT

Convert 4D's date & time to Unix time. If convertToUTC is one, resulting time will be converted to UTC (Universal
Coordinated Time).

ZIP TIME TO 4DDATETIME (UnixTime; Date; Time; convertToLocalTime)
-> UnixTime C_LONGINT
<- Date C_DATE
<- Time C_TIME
-> convertToLocalTime C_LONGINT 0 = no, 1 = yes (UnixTime is in UTC, convert to local time)

Convert Unix time to 4D's date & time.
ZIP entry times are always in UTC (in this implementation, not necessarily in the ZIP archive)

ZIP Compress BLOB (uncompressed; compressed; makeGZip; level; strategy; memLevel; CRC) -> error
-> uncompressed C_BLOB BLOB to compress
<- compressed C_BLOB resulting compressed BLOB
-> makeGZip C_LONGINT 0 = no (raw compressed data), 1 = yes (GZip header, CRC at

end ==> same as GZip file [.gz] on Unix)
-> level C_LONGINT 0..9, -1 for default of 6 (0 = fastest, 9 = best)
-> strategy C_LONGINT 0..2, -1 for default of 0

0 normal
1 Huffman only
2 filtered

-> memLevel C_LONGINT 1..9, -1 for default of 8 (hash bits: value of 8 means use 15 bits
in hash table)

<- CRC C_LONGINT valid only if makeGZip = 0
<- error C_LONGINT

Compress BLOB in memory. If makeGZip is zero, it is up to developer to save the size & CRC for later verification.

ZIP Decompress BLOB (compressed; uncompressed; isGZip; CRC) -> error
-> compressed C_BLOB compressed BLOB
<- uncompressed C_BLOB resulting uncompressed BLOB
-> isGZip C_LONGINT 0 = no, 1 = yes (GZip header, CRC at end ==> same as GZip

file)
<- CRC C_LONGINT valid only if isGZip = 0
<- error C_LONGINT

Decompress BLOB in memory. If isGZip is zero, it is up to developer to verify the size & CRC.

*** ZIP archive reader routines ***

ZIP Open File (fileName; rootPath; callbackName; cbFlags; NumberOfEntries; ZipComment) -> result
-> fileName C_STRING(255) name of the ZIP archive to open
-> rootPath C_STRING(255) optional full path to a directory for extraction
-> callbackName C_STRING(31) optional name of the 4D method to call
-> cbFlags C_LONGINT bit 0 - show progress window, bit 1 - ask for passwords
<- NumberOfEntries C_LONGINT number of entries in the archive
<- ZipComment C_STRING(255) archive's comment
<- result C_LONGINT positive: archiveReference, negative: error

Open existing archive stored in a file for reading.

ZIP Open BLOB (archive; rootPath; callbackName; cbFlags; NumberOfEntries; ZipComment) -> result
<-> archive C_BLOB ZIP archive to open
-> rootPath C_STRING(255) optional full path to a directory for extraction
-> callbackName C_STRING(31) name of the 4D method to call
-> cbFlags C_LONGINT bit 0 - show progress window, bit 1 - ask for passwords
<- NumberOfEntries C_LONGINT number of entries in the archive
<- ZipComment C_STRING(255) archive's comment
<- result C_LONGINT positive: archiveReference, negative: error

Open existing archive stored in a BLOB for reading. The routine will clear passed BLOB (archive) and its size will be
zero at return!

ZIP Go To First Entry (archiveReference) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
<- error C_LONGINT 51 = end of archive

Rewind to the first entry in the ZIP archive.

ZIP Go To Next Entry (archiveReference) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
<- error C_LONGINT 51 = end of archive

Skip to next entry in the ZIP archive.

ZIP Go To Entry (archiveReference; entryNumber) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
-> entryNumber C_LONGINT in range 1 to NumberOfEntries
<- error C_LONGINT 51 = end of archive

Skip to specified entry in the ZIP archive.
NOTE: This function first appeared in Zip4D 0.9.3.

ZIP Get Entry Properties (archiveReference; Name; Size; CTime; MTime; ATime; ExtAttrib; IntAttrib; IntFlags;
MadeBy; ComprMethod; ComprLevel; ComprSize; CRC; Comment; MacName; Creator; Type) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
<- Name C_TEXT name of the entry as stored in the archive (e.g. using forward

slashes on all platforms)
<- Size C_LONGINT uncompressed size
<- CTime C_LONGINT creation date (UnixTime in UTC)
<- MTime C_LONGINT modification date (UnixTime in UTC)
<- ATime C_LONGINT last access date (UnixTime in UTC)
<- ExtAttrib C_LONGINT external attributes (MS-DOS attributes in low word, Unix

attributes in high word)
<- IntAttrib C_LONGINT internal attributes

0 binary
1 ascii

<- IntFlags C_LONGINT internal flags
bit 0 entry is encrypted
bit 1..3 deflated:

1 for level >= 8
2 for level = 2
3 for level = 1

bit 4 has data descriptor at the end
<- MadeBy C_LONGINT version in low byte (& 0x00ff)

10 version 10 (original PKZip)
20 version 20 (PKZip 2.0.4)

platform in high byte (& 0xff00)
0 MS-DOS
7 MacOS
11 Win32

<- ComprMethod C_LONGINT compression method (only STORED & DEFLATED are
supported)
0 STORED
1 SHRUNK
2..5 REDUCED
6 IMPLODED
7 TOKENIZED
8 DEFLATED
9 ENHDEFLATED
10 DCLIMPLODED

<- ComprLevel C_LONGINT compression level 0..9 (0 = fastest, 9 = best)
<- ComprSize C_LONGINT compressed size
<- CRC C_LONGINT
<- Comment C_STRING(255) entry's ZIP comment
<- MacName C_STRING(31) stored Macintosh original name
<- Creator C_STRING(4) stored Macintosh file creator
<- Type C_STRING(4) stored Macintosh file type
<- error C_LONGINT

Get [all] properties of current entry in ZIP archive. For directories, the Name ends with a '/'.

ZIP Get Current Entry (archiveReference) -> result
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
<- result C_LONGINT positive: current entry number, negative: error

Get current position (entry number) in the archive.
NOTE: This function first appeared in Zip4D 0.9.3.

ZIP Calculate Rest Of Archive (archiveReference; Flags; Count; Size) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
-> Flags C_LONGINT bitfield
<- Count C_LONGINT number of entries (files & directories)
<- Size C_LONGINT total [uncompressed] size of entries
<- error C_LONGINT

Pre-flight all remaining entries [including current one] of the archive to get the number & size of files to be
decompressed. Needed for progress only.

ZIP Extract Rest Of Archive (archiveReference; Flags; Password) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
-> Flags C_LONGINT bitfield
-> Password C_STRING(255) optional password to use
<- error C_LONGINT

Extract all remaining entries [including current one] to disk.

ZIP Calculate Entry (archiveReference; Flags; Count; Size) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
-> Flags C_LONGINT bitfield
<- Count C_LONGINT number of entries (files & directories)
<- Size C_LONGINT total [uncompressed] size of entries
<- error C_LONGINT

Pre-flight current entry of the archive to get the number & size of files to be decompressed. Needed for progress only.
NOTE: This function first appeared in Zip4D 0.9.3.

ZIP Extract Entry (archiveReference; Flags; Password; FileNameToUse) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
-> Flags C_LONGINT bitfield
-> Password C_STRING(255) optional password to use
-> FileNameToUse C_STRING(255) optional file name to use (override name stored in archive)
<- error C_LONGINT

Extract current entry in ZIP archive into a file.

ZIP Extract Into BLOB (archiveReference; file; Password) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
<- file C_BLOB extracted file
-> Password C_STRING(255) optional password to use
<- error C_LONGINT

Extract current entry in ZIP archive into a BLOB.

ZIP Close (archiveReference) -> error
<-> archiveReference C_LONGINT result of [successful] call to ZIP Open File/ZIP Open

BLOB/ZIP Create File/ZIP Create BLOB
archiveReference is cleared (set to zero) if successful
if archiveReference is result of call to ZIP Create File/ZIP
Create BLOB, the archive is invalid => use ZIP Save to finish
the archive creation

<- error C_LONGINT

Close ZIP archive [close file, release all memory used, ...].

*** ZIP archive writer routines ***

ZIP Create File (fileName; rootPath; callbackName; cbFlags) -> result
-> fileName C_STRING(255) name of the archive to create
-> rootPath C_STRING(255) optional full path to a "root" directory for compression - this

path will be stripped from all file names
-> callbackName C_STRING(31) name of the 4D method to call
-> cbFlags C_LONGINT bit 0 - show progress window

bit 12 – create Mac SEA
bit 13 – create Win SEA

<- result C_LONGINT positive: archiveReference, negative: error

Create a ZIP archive in a file.
NOTE: The ability to create a SEA (Self Extracting Archive) first appeared in Zip4D 0.9.1.

ZIP Create BLOB (rootPath; callbackName; cbFlags) -> result
-> rootPath C_STRING(255) optional full path to a "root" directory for compression - this

path will be stripped from all file names
-> callbackName C_STRING(31) name of the 4D method to call
-> cbFlags C_LONGINT bit 0 - show progress window

bit 13 – create Win SEA
<- result C_LONGINT positive: archiveReference, negative: error

Create a ZIP archive in a BLOB.
NOTE: The ability to create a SEA (Self Extracting Archive) first appeared in Zip4D 0.9.1.

ZIP Add Entry (archiveReference; fileName; ComprLevel; Flags; Password; Comment) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Create File/ZIP Create BLOB
-> fileName C_STRING(255) name of the file to compress or name of the directory to store
-> ComprLevel C_LONGINT compression level 0..9, -1 for default of 6 (0 = fastest, 9 =

best)
-> Flags C_LONGINT bitfield
-> Password C_STRING(255) optional password to encrypt with
-> Comment C_STRING(255) optional comment to store
<- error C_LONGINT

Add an entry into the ZIP archive. For directories, ComprLevel & Password are ignored.

ZIP Calculate Hierarchy (archiveReference; fileName; Flags; NumberOfFiles; SizeOfFiles) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Create File/ZIP Create BLOB
-> fileName C_STRING(255) name of the file/directory to calculate sizes
-> Flags C_LONGINT bitfield
<- NumberOfFiles C_LONGINT number of entries (files & directories)
<- SizeOfFiles C_LONGINT total [uncompressed] size of entries
<- error C_LONGINT

Pre-flight the hierarchy to get the number & size of files to be compressed. Needed for progress only.

ZIP Add Hierarchy (archiveReference; fileName; ComprLevel; Flags; Password) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Create File/ZIP Create BLOB
-> fileName C_STRING(255) name of the file/directory to compress
-> ComprLevel C_LONGINT compression level 0..9, -1 for default of 6 (0 = fastest, 9 =

best)
-> Flags C_LONGINT bitfield
-> Password C_STRING(255) optional password to encrypt with
<- error C_LONGINT

Add a whole hierarchy to the ZIP archive.

ZIP Add BLOB (archiveReference; file; Flags; Name; CTime; MTime; ATime; ExtAttrib; IntAttrib; ComprLevel:L;
Password; Comment; Creator; Type; ComprSize; CRC) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Create File/ZIP Create BLOB
-> file C_BLOB document to compress
-> Flags C_LONGINT bitfield
-> Name C_TEXT name of the entry as to be stored in the archive (e.g. using

forward slashes on both platforms)
-> CTime C_LONGINT creation date (UnixTime in UTC)
-> MTime C_LONGINT optional modification date (UnixTime in UTC)
-> ATime C_LONGINT optional last access date (UnixTime in UTC)
-> ExtAttrib C_LONGINT external attributes (MS-DOS attributes in low word, unix

attributes in high word)
-> IntAttrib C_LONGINT internal attributes

0 binary
1 ascii
2 unknown

-> ComprLevel C_LONGINT compression level 0..9, -1 for default of 6 (0 = fastest, 9 =
best)

-> Password C_STRING(255) optional password to encrypt with
-> Comment C_STRING(255) optional comment to store
-> Creator C_STRING(4) optional Macintosh file creator
-> Type C_STRING(4) optional Macintosh file type
<- ComprSize C_LONGINT compressed size
<- CRC C_LONGINT
<- error C_LONGINT

Add a BLOB into the ZIP archive. For directories (name ending with '/'), ComprLevel & Password are ignored.

ZIP Copy (newArchiveRef; oldArchiveRef) -> error
-> newArchiveRef C_LONGINT result of [successful] call to ZIP Create File/ZIP Create BLOB
-> oldArchiveRef C_LONGINT result of [successful] call to ZIP Open File/ZIP Open BLOB
<- error C_LONGINT

Copy current entry from one ZIP archive to another.

ZIP Save File (archiveReference; ZipComment) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Create File

archiveReference is cleared (set to zero) if successful
-> ZipComment C_STRING(255) optional archive's comment
<- error C_LONGINT

Save (and close) the ZIP archive.

ZIP Save BLOB (archiveReference; ZipComment; archive) -> error
-> archiveReference C_LONGINT result of [successful] call to ZIP Create BLOB

archiveReference is cleared (set to zero) if successful
-> ZipComment C_STRING(255) optional archive's comment
<- archive C_BLOB created archive
<- error C_LONGINT

Save (and close) the ZIP archive.

Flags bitfield meaning:
for zipping:

Zip_Default 0 use MacBinary if needed (Mac only), store UTC times, store
Mac info

Zip_DataForkOnly 1 store data forks only (Mac only - always true on Win)
Zip_UseMacBinary 2 always use MacBinary encoding (Mac only)
Zip_JunkPath 4 do not store path (store file names only)
Zip_Ascii 8 treat as text file
Zip_Binary 16 treat as binary file
Zip_NoUTC 32 do not store UTC time extra fields
Zip_NoMacInfo 64 do not store Mac extra fields
Zip_StoreReadOnly 128 store read-only flags (mark file as RO if it is read-only)
Zip_NoDirectories 256 do not put directory entries into the archive
Zip_NoInvisibleFiles 512 ignore invisible files/directories (HIDDEN on Win, invisible

on Mac)
Zip_StoreMacComments 1024 store Mac Finder comments as ZIP entry comments (Mac only)
Zip_StoreFullNamesAsComments 2048 store full path (platform native) as ZIP entry comments
Zip_DoNotStoreIntoArchive 1073741824 do not put the files into the ZIP archive, only headers are put

into the archive (useful for file hierarchy traversal)

for unzipping:
Zip_Default 0 decode MacBinary if needed (on Win, only data fork will be

extracted)
Zip_DataForkOnly 1 extract data forks only (always true on Win)
Zip_DoNotExpandMacBinary 2 do not decode MacBinary
Zip_JunkPath 4 do not use path (flat file names only, no directories)
Zip_UseReadOnly 128 use read-only flags (make file RO if marked as such in archive)
Zip_NoDirectories 256 ignore directory entries in the archive
Zip_NoInvisibleFiles 512 ignore invisible files/directories (HIDDEN on Win, invisible

on Mac)
Zip_UseMacComments 1024 use ZIP entry comments as Mac Finder comments (Mac only)

Callback 4D method arguments and return values:
$0 C_LONGINT <- result

Zip_CB_Continue 0 continue operation
Zip_CB_Skip -1 skip current entry
Zip_CB_Abort -128 abort completely (e.g. user clicked "Abort" in progress window)
any_other_value abort completely

$1 C_TEXT -> file name [Zip format for Zip_CB_GetFile, Zip_CB_PutName, native
otherwise]

$2 C_LONGINT -> operation
Zip_CB_GetFile 0 Unzip this ZIP entry?

Zip entry passed in $1 in Zip format
Called before extracting a zip entry
Return value in $0

Zip_CB_GetName 1 Get name for this file/directory
Name of file/directory passed in $1 in Native OS format
Called before extracting a zip entry
Return new name of file/directory in $5 or keep the name if $5

empty
Zip_CB_GetPassword 2 Get password for this file

Name of file passed in $1 in Native OS format
Called before extracting a zip entry
Return password for file in $5. If empty string is returned
and “ask for passwords” bit is set, plug-in will display its own

request
dialog.

Zip_CB_Descend 3 Descend this directory?
Name of directory passed in $1 in Native OS format
Called at directory entry when compressing a hierarchy
Return value in $0

Zip_CB_PutFile 4 Zip this file/directory?
Name of file/directory passed in $1 in Native OS format
Called before compressing file
Return value in $0

Zip_CB_PutName 5 Name for this ZIP entry
Name of file/directory passed in $1 in Zip format
Called before adding new entry into archive
Return new name of file/directory in $5 or keep the name if $5

empty
Zip_CB_Unzipping 6 progress unzipping file

Use this event to implement custom progress
Zip_CB_Gathering 7 progress calculating sizes for zipping (ZIP Calculate Hierarchy) or unzipping

(ZIP Calculate Rest Of Archive)
Use this event to implement custom progress

Zip_CB_Zipping 8 progress zipping file
Use this event to implement custom progress

$3 C_LONGINT -> processed part of current file (for Zip_CB_Unzipping and Zip_CB_Zipping),
total files so far (for Zip_CB_Gathering)

$4 C_LONGINT -> size of current file (for Zip_CB_Unzipping and Zip_CB_Zipping), total size
so far (for Zip_CB_Gathering)

$5 C_TEXT <- name of the current file (for Zip_CB_GetName, Zip_CB_PutName),
password (for Zip_CB_GetPassword)

*** GZip file routines ***
NOTE: Functions for streaming access to GZip (.gz) files first appeared in Zip4D 0.9.5.
NOTE: Encryption (and argument “password”) first appeared in Zip4D 0.9.6.

ZIP Open GZip File (fileName; password) -> result
-> fileName C_STRING(255) name of the archive to create
-> password C_STRING(255) optional password for encryption
<- result C_LONGINT positive: fileReference, negative: error

Open a GZip file for reading and check the header.
If password is not empty, encryption is used. If the password is incorrect, the stream will encounter compression errors
(some ZIP Read GZip File call will fail).

ZIP Read GZip File (fileReference; blob; size) -> result
-> fileReference C_LONGINT result of [successful] call to ZIP Open GZip File
-> blob C_BLOB data storage; must not be empty (is never resized)
-> size C_LONGINT number of bytes to read
<- result C_LONGINT positive: number of bytes read, negative: error

Read data from a GZip file. If size is zero, blob’s size is used.

ZIP Create GZip File (fileName; level; strategy; memLevel; password) -> result
-> fileName C_STRING(255) name of the archive to create
-> level C_LONGINT 0..9, -1 for default of 6 (0 = fastest, 9 = best)
-> strategy C_LONGINT 0..2, -1 for default of 0

0 normal
1 Huffman only
2 filtered

-> memLevel C_LONGINT 1..9, -1 for default of 8 (hash bits: value of 8 means use 15 bits
in hash table)

-> password C_STRING(255) optional password for encryption
<- result C_LONGINT positive: fileReference, negative: error

Create and open a GZip file for writing, write GZip header.
Encryption is used if password is not empty.

ZIP Write GZip File (fileReference; blob; size) -> result
-> fileReference C_LONGINT result of [successful] call to ZIP Create GZip File
-> blob C_BLOB data storage; must not be empty (is never resized)
-> size C_LONGINT number of bytes to write
<- result C_LONGINT positive: number of bytes written, negative: error

Write data into a GZip file. If size is zero, blob’s size is used.

ZIP Close GZip File (fileReference) -> error
<-> fileReference C_STRING(255) result of [successful] call to ZIP Open GZip File or ZIP Create

GZip File
<- error C_LONGINT

For reader (file opened with call to ZIP Open GZip File):
- check the CRC and decompressed size
- close the file
- set fileReference to zero

For writer (file opened with call to ZIP Create GZip File):
- write the CRC and decompressed size
- close the file
- set fileReference to zero

